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Abstract 

The goal of this study is to reduce the rank of differential equations and describe the most 

efficient way to do this. We will consider the boundary value problem of a nonlinear system of 

differential equations and provide a systematic overview of the methods for determining the 

corresponding stability diagram, its structure and properties. Some problems may be difficult to 

solve directly, especially the Mathieu differential equation problem, which has many useful 

applications in theoretical and experimental physics. Therefore, a useful way to solve them is to 

transform nonlinear differential equation systems into a system of linear differential equations. In 

this study, we will use the solutions of the Mathieu differential equation, the pendulum equation 

and the parachute equation as examples, and develop a method for solving them. The method 

includes the analysis of the motion process, the landing speed and the friction coefficient of the 

average speed. We have improved other factors compared with traditional methods to create a 

complete method for determining the starting point and the landing point. The study recommends 

it as a reference for other analysis methods, and we provide clear examples. 

Keywords: Mathematical Modeling, Higher-order Equations, Mathieu Differential Equation, 

Parachuting, Displacement function 
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1. Introduction 

To find approximate solutions to nonlinear differential equations when an exact solution 

cannot be obtained by conventional methods. In general, for vibration and nonlinear problems, 

the Matthew equation in its classical form is necessary to transform it into a linear differential 

equation to facilitate its solution. How is it solved after it has been reduced? It involves the use 

of numerical methods. These methods create successive approximations that converge to the 

exact solution of the equation or system of nonlinear differential equations, ultimately reducing 

its degree. However, while our approach focused on solving higher-order nonlinear differential 

equations in several variables involving only one variable, it only addressed solving nonlinear 

differential equations in a single variable, rather than those involving multiple variables (Ascher, 

U.M. and L.R. Petzold, 1998: SIAM.). In many applications, it is necessary to have a 

comprehensive understanding of the dynamics of complex structures that use differential 

equations such as helicopters, airplanes, buildings, bridges, and vehicles. While modern design 

tools such as finite element analysis have greatly expanded the mathematical modeling available 

for such models, they are often limited in their dynamic capabilities, especially when the 

dynamics of the structure introduces a nonlinear system of differential equations (Ascher, U.M. 

and L.R. Petzold, 1998: SIAM.). Previous studies have addressed this topic such as Reduction of 

Nonlinear Equations in Mathematical Mechanics and Physics, New Integral Equations and Exact 

Solutions (Antontsev, S.N., 2002), and The Mathieu differential equation problem and Its 

Generalizations: An Overview of Stability Diagrams and Their Properties (Kovacic, I.,R.Rand, 

and S. Mohamed Sah,2018.). The main objective of this study is to address and develop a model 

for reducing the order of differential equations by simplifying the differential equations to 

ordinary linear equations. The study model developed by (Semler, C., W. Gentleman, and M. 

Paıdoussis, 1996., Shakeri, F. and M. Dehghan, 2008., Stamenković, M., 2012.) extends to 

obtaining exact models of higher-order equations and then reducing them to systems of linear 

differential equation models. Mathieu’s differential equation problem finds wide applications in 

many areas of classical mechanics, including describing the vibrations of mechanical systems 

with time-varying parameters, such as the vibrations of bridges and viaducts under the influence 



 
 

15872 
 

of wind or earthquakes. Studying the stability of dynamic systems and determining the 

conditions that lead to the occurrence of linear and nonlinear resonance phenomena 

(Stamenković, M.,2012).Describing the motion of charged particles in a time-varying 

electromagnetic field. Studying the motion of celestial bodies under the influence of changing 

gravitational forces. 

2. Study Problem  

The fundamental problem in studying the nonlinear differential equation of Mathieu’s 

differential equation problem and its applications to classical mechanics is how can we reduce 

complex systems of nonlinear differential equations to linear differential equations. The 

importance of the study in solving the fundamental problem lies in the fact that despite the 

simplicity of the form of the equation, the complexity can be reduced by converting systems of 

nonlinear differential equations to linear systems to make the system more amenable to analysis 

and understanding. (Bruno, A.D., 2000). How can the Mathieu’s differential equation problem 

and its very complex solutions be made simpler, more amenable and flexible? Reducing systems 

of differential equations to their simplest forms is a fundamental goal in many scientific and 

engineering fields. This simplification allows for a better understanding and analysis of the 

behavior of the system. (Semler, C., W. Gentleman, and M. Paıdoussis, 1996.). The main 

problem in studying the Mathieu’s differential equation problem is that there are no general 

analytical solutions to this equation, except in special and simple cases (Shakeri, F. and M. 

Dehghan, 2008.). This means that the solutions of a nonlinear differential equation cannot be 

expressed in terms of known elementary functions (such as exponential and trigonometric 

functions), making it difficult to analyze and predict the behavior of the solutions. Reducing 

complex systems of nonlinear differential equations to simpler forms The Mathieu’s differential 

equation problem is an important starting point in reducing complex systems of differential 

equations to simpler forms. In many cases, the behavior of complex systems can be 

approximated using the Matthew equation, making them easier to analyze and study 

(Chaturantabut, S. and D.C. Sorensen. 2009.). Natural pattern method the system is analyzed 

into simple natural patterns, and each pattern is described by a separate Matthew equation. 



 
 

15873 
 

Averaging method the time averages of the periodic coefficients in the equation are calculated, 

resulting in an equation with constant coefficients that is easy to solve. Numerical approximation 

methods: Using computers to process the equation and calculate the solutions approximately. 

Importance of studying the Mathieu’s differential equation (Ibragimov, N.K., 1992.). 

 

3. Study Questions  

The main question that the researcher asks is: 

 How can we reduce complex systems of nonlinear differential equations to linear differential 

equations. 

There are some sub-questions: 

1. How can we speed up the simulations and calculations needed to analyze the system? 

2. How can we solve the basic problem that despite the complex form of the equation, the 

complexity can be reduced by converting systems of nonlinear differential equations to linear 

systems to make the system more analyzable and understandable. 

3. How can we find general analytical solutions to Mathieu’s differential equation problem that 

can be generalized even though there are no general analytical solutions to this equation, except 

in special and simple cases 

4. Study Significance  

The Mathieu’s differential equation problem is a linear differential equation with periodic 

coefficients and describes a wide range of physical and engineering phenomena. Despite its 

apparent simplicity, it carries great mathematical complexities and is considered one of the most 

important differential equations in the field of analytical mechanics and vibration theory. The 

Mathieu’s differential equation problem finds wide applications in many areas of classical 

mechanics, including It is an important starting point in reducing complex systems from 

differential equations to simpler forms. In many cases, the behavior of complex systems can be 
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approximated using the Matthew equation, which facilitates their analysis and study. Simplifying 

nonlinear differential equation systems into linear differential equations helps in predicting the 

behavior of complex systems, which contributes to improving their design and maintenance. The 

differential equation is a powerful tool for understanding and analyzing many physical and 

engineering phenomena. Despite the challenges facing its study, ongoing research contributes to 

the development of new methods for solving and analyzing it, which opens new horizons for 

applications in various fields. 

 

5. Methodology  

The study relied on the analytical research approach using MATLAB program based on 

analytical methods and used numerical analysis and algorithms to reach the results and followed 

the exploratory analytical research approach through the results of the algorithms (Ibragimov, 

N.K., 1992.). Based on previous studies in calculations and applications of Mathieu’s functions 

from a historical perspective, (Hide, R., 1997.) Mathieu’s differential random equation, nonlinear 

differential equations, and dynamic systems, (Stamenković, M.,2012., Teschl, G.,.2012). Exact 

solutions to Matthew's equation, (Daniel, D.J., 2020. 2020). The main objectives of this study 

are as follows: 

• Develop more accurate and efficient mathematical models to describe the behavior of complex 

and nonlinear systems. 

• Use the results obtained in various fields such as mechanical engineering and others 

• Reduce complexity by converting nonlinear differential equation systems into linear systems to 

make the system more analyzable and understandable. And speed up the simulation and 

calculation processes required to analyze the system. 

6.  Converting a general higher-order equation.  
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Solving ordinary differential equations for both first order and higher-order equations typically 

involves finding the appropriate solution. To solve higher-order equations numerically, 

(Ibragimov, N.K., 1992.). it becomes important to convert them into a system of linear (first 

order) differential equations. This is a common practice in mathematics (da Costa Campos, 

L.M.B.,. 2019). Assuming that a differential equation of order n to the t h can be solved, it can be 

written in the following form: 

 ( )   (             
    

     
)                                                 ( ) 

Then the system can be converted into a first-order system by this standard change of variables: 

                                (   )  
     

     
           ( ) 

The resulting first-order system is: 

  
              

             
( )

  ( )   (            )  

In vector form this is simply     (   )                

and   (   )   (            ). For example, the change of variables has the form:  

            

And the resulting function are given as: 

  
      

            (  )      (  )                                               ( ) 

In vector form this is:  

   (
  

         (  )      (  )) 

The initial conditions are given by: 
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 ( )  (
  ( )

  ( )
)  (

  

  
)                                                ( ) 

The reason we convert a higher-order differential equation into a system of lower-order 

equations is to create a suitable model for solving the equation numerically (Ibragimov, N.K., 

1992.). Most general programs for solving ODEs require us to put the ODE differential equations 

into a first-order linear system form. Furthermore, we make this change due to a dynamic reason 

in the higher order differential equation system. For example, in the case of quadratic equations, 

like the position of a pendulum, knowing the angle and angular velocity is necessary to 

understand what the pendulum is doing. We refer to the pair of values (    ) as the state model 

of the system. Typically, in applications, the vector   represents the state of the system 

mentioned in the differential equation (McLachlan, R.I., 1995.) 

6-1 converting Some Second- Order differential equations as first Order. 

Suppose we have a second-order differential equation (where   is the undefined function and   is 

the variable). With luck, it is possible to transform the given equation into a first order. To solve 

a first-order differential equation for a function  , you can substitute u with   . After verifying 

the substitution, you can solve the differential equation using any method (Bibikov, Y.N.. 2006.). 

The values of   for   can be obtained by solving the first-order differential equation,         

which was derived from the original variable substitution. However, this approach requires some 

luck as defining.        may not always be feasible. Sometimes, we may encounter a second-

order differential equation in which   is the unknown function and   is the variable. Fortunately, 

it's possible to transform the given equation into a first-order differential equation. To solve a 

first-order differential equation for a function    simply substitute   with   . After verifying the 

substitution, you can solve the differential equation using any method. The values of y for   can 

be obtained by solving the first-order differential equation,         which was derived from the 

original variable substitution. However, it's important to note that this approach may not always 

be feasible since defining   as    may not be possible in every case (Polyanin, A.D. and V.F. 

Zaitsev,. 2017). 

6-2 Solving Second-Order Differential Equations Not Explicitly Containing  
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To simplify differential equations, we normally set them in a way that explicitly shows        , 

and        , but not  . This allows us to view the differential equation as a first-order equation 

of      . For the sake of simplicity, we usually set it as (da Costa Campos, L.M.B., 2019). 

  

  
   

Consequently 

   

   
 

 

  
(
  

  
)  

 

  
( )  

  

  
                                                               ( ) 

The equation can be transformed by making some substitutions, resulting in a first-order 

differential equation for the variable  . Since the original equation doesn't involve  , neither 

does the differential equation for  . This provides us with an excellent opportunity to solve the 

equation for   using the methods that have been developed (as discussed in -(Ascher, U.M. and 

L.R. Petzold, 1998: SIAM., Pucci, E. and G. Saccomandi, 2002.). After that, we assume that 

'u(z)' can be determined. 

 ( )  ∫
  

  
    ∫ ( )                                                  ( ) 

When solving certain equations, it is common to end up with a formula that contains two 

constants. One of these constants is obtained from the general solution of the first-order 

differential equation in the variable  , while the other results from an integration of the variable 

  to obtain the values of  . We need to classify these constants as different random constants. 

Now, let's take a brief detour and examine the solutions to non-constant coefficient, second-order 

differential equations of the form (Hartman, P., 2002, Hide, R., 1997, Kovacic, I., R. Rand, and 

S. Mohamed Sah, 2018). 

 ( )     ( )    ( )    

In general, solving differential equations with varying coefficients is often more challenging than 

solving those with constant coefficients. However, if we have knowledge of one solution to the 

differential equation, we can use a method called reduction of order to find a second solution. 
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This method involves a quick look at an example to demonstrate how it works (Bibikov, Y.N., 

2006.,Pesheck, E., C. Pierre, and S. 2001). 

Example (6.1) Find the general solution to                     given that   ( )      

Solution: To perform a reduction of orders, it is necessary to have a known solution. Without 

this initial solution, it will not be possible to proceed with the reduction of order [16]. Once we 

have this first solution, we can assume that a second solution will take the following form: 

  ( )   ( )  ( )                                                              ( ) 

To find the correct value of  ( ), we need to choose a guess and plug it into the differential 

equation. Then, we can solve the new differential equation to determine the proper value of  ( ). 

For this problem, we'll need to use the form of the second solution and its derivatives. Let's get 

started by plugging in our guess and solving the differential equation (Pucci, E. and G. 

Saccomandi, 2002.). 

  ( )               
 
( )               

  
( )                      

When we substitute the values into the differential equation, we will get the corresponding 

solution. 

   (                   )   (           )   (    )    

After rearrangement and simplification, the expression becomes: 

      (    )   (             )    

            

we note that after simplification, only the terms involving the derivatives of   remain. The term 

that involves    drops out. If all the calculations are done correctly, this should always happen. In 

some cases, like in this one, the first derivative term will also drop out. Therefore, for equation 

(7) to be a solution,   must satisfy certain conditions. 
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                                                                  ( ) 

It seems like we have a problem. To find a solution to a second order non-constant coefficient 

differential equation, we need to solve a different second order non-constant coefficient. 

However, this is not actually a problem. Since the term involving the   drops out, we can solve 

equation (8) using the knowledge that we already have at this point (Bibikov, Y.N.,. 2006., Boyce, 

W.E., R.C. DiPrima, and D.B. 2017, Chaturantabut, S. and D.C. Sorensen2010). We will solve 

this by following the steps mentioned below.:            . After changing the variable, 

equation (8) becomes          , which is a linear, first-order differential equation that can 

be solved. This explains why this method is called a reduction of order. By reducing a second-

order differential equation to a first-order differential equation, we can solve it more easily. Since 

this is a simple first-order differential equation, I'll leave the details of the solving process to you. 

If you need a refresher on how to solve linear, first-order differential equations, feel free to ask. 

The solution to this differential equation is:   ( )    (   ). However, this isn't exactly what we 

were looking for. We need to find a solution to equation (8). Fortunately, we can do this by 

recalling our change of variable,     . Using this, we can easily solve for  ( ). 

 ( )  ∫    ∫  
 
    

 

 
  

 
    

To obtain a second solution, we can use the most general open parenthesis '  close parenthesis 

possible. We have the freedom to choose the constants as per our wish to eliminate the 

extraneous constants. In this scenario, we can select the constants such that they clear out all the 

extraneous constants.   
 

 
        Using these gives the following for  ( ) and the second 

solution. 

 ( )   
 
    ( )     ( 

 
 )   

 
  

Then general solution will then be:  ( )     
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If we had been given initial conditions we could then differentiate, apply the initial conditions, 

and solve for the constants (Teschl, G. 2012). 

Example 6.2. Consider the second-order differential equation. 

   

   
 

  

  
       

Seine  

  

  
    and       

   

    
  

  
 

With the above suggestion, the differential equation will become as follows. 

  

  
         

This is a first-order linear differential equation with the integral factor. 

   ∫        

Moving on to continue with first order linear equations, 

   (
  

  
        ) 

   
  

  
               

 

  
(    )   ∫        

 

 
             

There        (       )           
    

But         , so the last equation can be rewritten as 

  

  
          

    

which is integrated. 

∫(         
   )           
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Thus (let          ), then the solution to original differential equation is: 

 ( )          
       . 

If the differential equation for the variable   can be separated, its solution can be obtained as 

shown in (Ascher, U.M. and L.R. Petzold, 1998: SIAM., Stamenković, M., 2012.). We may then 

check the constant solutions to this differential equation and consider them when integrating 

    . 

Remark 6.1. Our basic proposal is to apply to second-order equations in a clear and well-known 

way. Second-order general equations Ordinary differential equations of the form: 

 

     (    )                                                             ( ) 

Which we rewrite as 

   

  
  (    )                                                              ( ) 

When we integrate this first-order equation, we get: 

    (    )                                                                   ( ) 

We invert  ( )   to give. 

    (    )                                                                   (  ) 

This form of  

    

  
    (    )                                                         (  ) 

It is a trivial differential equation for   ( ). Moving to the final solution, we use quadrature 

performance: 

     ∫
  

 (    )
                                                         (  ) 

Our goal is to expand the application of this method to equations of higher order, as described in 

reference [14]. 

7. Method for eliminating the differential factor  

The study of systems of differential equations has a wide range of applications. In many fields, 

the theory of differential algebra plays a crucial role in studying solutions of ordinary differential 
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equations of various orders. In this context, we are interested in eliminating the differential 

operator, which is a sub-theory of the algorithm through which systems of higher-order algebraic 

differential equations can be simplified. This is achieved by reducing the dimensions of the 

system of dynamic differential equations until we arrive at only one ODE variable (Olver, P.J., 

2006., Scarciotti, G. and A. Astolfi, 2015). 

7.1 Algebraic differentiation to remove differential coefficients. 

Algorithmic tools can be developed to solve polynomial differential equations. However, 

developing these tools can be complex, and may require an algorithm for parsing. To simplify 

this process, an algorithm was developed based on the work of Seidenberg and Rosenfeld, 

incorporating references (Boyce, W.E., R.C. DiPrima, and D.B. 2017., da Costa Campos, L.M.B. 

2019., Ibragimov, N.K., 1992.). This updated algorithm no longer requires other rules in the 

differential solution (Hide, R., 1997.). It involves eliminating differential coefficients to treat sets 

of higher-order polynomial differential equations where   is the differential field of coefficients 

(   ), and   is a finite set of dependent variables. 

{
 
 

 
 
  

   (     )                                                               

  
    (    )                                                 (  )

  
                                                                        

 

The system can be rewritten as: 

  

{
 
 

 
 

   
   (     )           

   
    (    )     

   
                      

                               (  ) 

8. Reductions in n-dimensional dynamic differential equation systems 

We make notes to summarize based on each system being coupled by at least one state with one 

variable. Otherwise, the state variables would naturally separate into lower-dimensional 

equations, and there would be no need for reduction. 

8.1 Linear systems 

For first-order linear systems of dimension    it is possible to simplify them to a single ODE of 
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higher order [9,20,24]. If the coefficient matrix of such a first-order system is full-order, then the 

higher-order ODE and the output will both be of order n. However, if the coefficient matrix is 

singular, then the resulting higher order ODE will be of order less than   (Barao, M., J. Lemos, 

and R. Silva, 2002.). 

8-2 Reducible nonlinear systems and their applications 

There are several possibilities for first-order nonlinear systems with dimension  , due to the 

formation of nonlinearities. In some cases, such as the Rossler equation, the complete differential 

coefficient can be omitted, and we can express all state variables in a first-order nonlinear system 

of higher-order ODE differential equations (da Costa Campos, L.M.B.,. 2019, Semler, C., W. 

Gentleman, and M. Paıdoussis, 1996., Stamenković, M., 2012.). However, it should be noted that 

the order of the individual ODE differential equations may differ from the  -dimension of the 

first-order system. For instance, consider the following system: 

{
 
 

 
 
                                                                                  

                                                                                      (  )

                                                                                         

 

It is Clearly that the differentiation of the first equation gives: 

{

                                                             

                                                                                                  (  )

                                                                           

 

The following paragraph discusses an equation for one variable in the case  ( ) even though the 

original system was first-order. The system of fourth-order nonlinear dynamic differential 

equations is reduced to a single second-order nonlinear ODE differential equation. Even for the 

Lorenz equation, it will be possible to reduce this system to a single equation. The equation is 

not bounded by any number of differentials, and the single reduced equation of the state variable 

cannot be expressed as a parameter of any finite order. One state variable may satisfy a finite 

order of differential equations, while a different state variable may have one state variable. In 

such cases, nonlinearity may result in a system linearized to a distinct state variable in which the 

reduction to differential equations in just one variable can be made (McLachlan, R.I., 1995., 
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Pesheck, E., C. Pierre, and S. 2001.). The paragraph then goes on to discuss the application of 

the parachute equation, which is used as an idea for this application. It relies on a model of the 

parachutist’s movement in the air using the evidence of force and air resistance together. 

Newton's second law states that the sum of all forces acting on an object is equal to its mass 

times its acceleration. When parachuting, assuming the air resistance coefficient changes 

between free fall and the final landing with a parachute, we can use the parachute equation in the 

form: 

                                                                             (  ) 

The initial conditions  

 ( )             ( )       

Here 

  
     

 

  
 

  is the mass of the body and parachute,   is the density of the fluid in which the body moves, 

   is the drag coefficient for the parachute,   is the effective diameter of the parachute. The 

solution of equation (15) is given by: 

  
 

 
(   (

 √     

 
)  √   ) 

We must be careful to find a specific solution. This is because if we use undefined parameters, 

our prediction of the solution's form would be indeterminate. 

  ( )      (  )      (  ) 

If     , the prediction would be problematic, as the guess for the solution is exactly the 

solution. In this case, we will need to add   to the solution. However, if     , there will be no 

error in guessing. In this case, we must consider two cases. Firstly, i    , the first guess is 

good because it will not be the complementary solution (Bibikov, Y.N.,. 2006., Chaturantabut, S. 

and D.C. Sorensen2010., Teschl, G.,. 2012.). Upon deriving the conjecture, we can substitute it 

into the differential equation and simplify it to obtain the solution. 

(        )   (  )  (        )   (  )       (  ) 
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Determine the coefficients are equal: 

   (  )             (      )     
  

     
  

   (  )             (      )          

The particular solution is : 

        ( )  
  

     
    (  )  

  

 (
 
    )

   (  )  
  

 (  
    )

   (  )   

Note that we can rearrange equation (Boyce, W.E., R.C. DiPrima, and D.B. 2017., Kovacic, I., R. 

Rand, and S. Mohamed Sah, 2018.) based on desired displacement form. 

 ( )       (   )       (   )  
  

 (  
    )

   (  ) 

 ( )      (     )  
  

 (  
    )

   (  ) 

If we use the sine formula for the influence function, a similar formula can be obtained. 

If      In this case, we will need to add t to the expectation for the solution. 

  ( )        (   )        (   ) 

We note that we have advanced in the solution and acknowledge that      In our expectation. 

It helps us acknowledge some of the simplifications we need later (Bruno, A.D.,. 2000., Pucci, E. 

and G. Saccomandi, 2002., Semler, C., W. Gentleman, and M. Paıdoussis, 1996.) Deriving our 

expectation, plugging it into the differential equation and then simplifying, it gives us the 

following: 

(    
    )      (  )  (    

    )      (  )           (  )           (  )

       (  ) 

Before equating coefficients, let's recall the definition of natural frequency. 

    
       (√

 

 
)

 

     (
 

 
)      

So, the first two terms drop out (which is a very good thing) and this gives us, 

         (  )           (  )        (  ) 
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Now assume that: 

   (  )               
  

    
 

   (  )                

In this case we be: 

  ( )  
  

    
     (  ) 

The displacement for this case is given: 

 ( )       (   )       (   )  
  

    
     (   ) 

 ( )      (     )  
  

    
     (   ) 

Depending on the above model we find, what is the purpose of the two cases in this case? In the 

first case,       The displacement function consists of two cosines and is well always behaved. 

In contrast, in the second case,       We will have some issues in t increases (Barao, M., J. 

Lemos, and R. Silva, 2002., Chaturantabut, S. and D.C. Sorensen. 2009., Shakeri, F. and M. 

Dehghan, 2008.). Add The presence of t in the solution means that we will see an oscillation that 

increases in amplitude as t increases. This condition is called air friction, and we generally want 

to avoid that. Aassuming that the impact function was: 

 ( )       (   ) 

We will also have the possibility of vibration if we assume the impact function as follows: 

 ( )       (   ) 

It is important to note that we should not assume that the influence function will always take one 

of the two forms mentioned earlier. Coercive jobs can come in various forms, and if we come 

across an effect function that differs from the one used in this case, we will need to deal with 

undefined coefficients or different parameters to find a solution (Boyce, W.E., R.C. DiPrima, and 

D.B. 2017., Chaturantabut, S. and D.C. Sorensen. 2009, Kovacic, I., R. Rand, and S. Mohamed 

Sah, 2018.).  

9. Possibility of Numerical Solution 
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We can reduce any higher order ordinary differential equation to a system of first order ordinary 

differential equations by substitution. Let's assume second order ordinary differential equations 

and consider the initial value of the vector  . 

 
   

   
  (    

  

  
)                                                            (  ) 

Nonlinearity can have several effects. Resonance can cause an increase in the amplitude of 

motion, which, in turn, can affect the relationship between period and amplitude. A more 

realistic model can be used to obtain a tendency to produce large movements. These concepts are 

discussed in sources such as (Bibikov, Y.N.,. 2006., Boyce, W.E., R.C. DiPrima, and D.B. 2017, 

Olver, P.J., 2006). 

   

   
 (       (  ))                                              (  ) 

By solving a system of first-order differential equations, one can reduce higher-order differential 

equations to this form. 

Example 9.1. Find the solution to the following:  

            (  )                  ( )  
 

 
   

Solution First, divide through by   to get the differential equation in the correct form: 

   
 

 
                 

Now that we have done this, we can find the integrating factor,  ( ) 

 ( )   ∫ 
 
 
        | | 

It's important to remember that the minus sign is a part of  ( ). Omitting this minus sign can 

transform a simple problem into a very difficult or even impossible one. Therefore, it's crucial to 

be careful while solving such problems. Moving on to the next step, we can simplify this 

problem just like we did in the previous example, (Barao, M., J. Lemos, and R. Silva, 2002., 

Bruno, A.D.,. 2000.). 

  ( )       | |     | |  
 | |       



 
 

15888 
 

Since we are squaring the term, we can drop the absolute value bars. Then, multiply the 

differential equation by the integrating factor (using the rewritten one, not the original equation).  

(    )       (  )       

Integrate both sides and solve for the solution.  

    ( )  ∫     (  )    ∫         

    ( )   
 

 
     (  )  

 

 
    (  )  

 

 
   (  )          

 ( )   
 

 
     (  )  

 

 
     (  )  

 

 
     (  )             

Apply the initial condition to find the value of c.  

 

 
    ( )   

 

 
   

 

 
              

 

 
      

 

 
       

   
 

 
                     

 

 
 

Then the solution is: 

 ( )   
 

 
     (  )  

 

 
     (  )  

 

 
     (  )         (  

 

 
)    

Then the plot of the solution is: 

 

 

Figure 1 

10. Classical Mathieu’s Equation: Mechanical Models and Applications  

The concept of geometric nonlinearity is significant in the study of the Mathieu equation. 

Resonance between the forcing frequency and the unforced natural frequency of the oscillator 

can result in infinite solutions, as shown in Figure 2. However, nonlinear systems have 
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limitations, unlike linear systems. In the case of a vertically driven pendulum, the nonlinear 

terms in the Mathieu equation can be included by increasing the sin x expansion of equation. 

(16). Conclusions from this analysis were drawn in reference. 

 

 

Figure 2 

In this section, we briefly review some known facts about the solutions of the Mathieu equation 

(Hartman, P., 2002). The Mathieu equation is a second-order homogeneous linear differential 

equation of the form in a Taylor series.  

   

   
 (       (  ))                                              

The constants   are often referred to as the characteristic element and the parameter in parabola. 

Equation (16) deals only with real values of alpha and  , although we can also consider the more 

general case where alpha and   are complex numbers. By replacing the independent variable 

     in parabola (15), we obtain the modified Mathieu equation. 

   

   
 (        (  ))                                             (  ) 

              The deflection angle of a pendulum is represented by the generalized 

coordinate  . The gravitational acceleration is denoted by   and the vertical motion of the 

continuous support is represented by      ( ). The equilibrium solutions are given by 

              . To check stability, we can linearize the equation. Equation (16) deals with 

balance and stability and can be derived in the form of an equivalent equation, as shown in 

equation (10). If the support movement is defined by     (  ), then the motion for less phi is 

represented by the numerator. 
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 (  

  
   

 
   (  ))                                             (  ) 

In this study, the effect of damping on the transition curves of the Mathieu equation was 

analyzed by applying the two-variable expansion method to the damper Mathieu’s equation. 

   

   
  

  

  
 (       )                                                (  ) 

To apply the perturbation method, the damping coefficient    was rescaled accordingly. 

   

   
 (        (  ))     

The Mathieu equation, as expressed in its classical form (15), is typically used to solve 

differential equations in two scenarios: Case 1 - for systems that involve a periodic effect, and 

Case 2 - for stability studies of periodic motions in nonlinear autonomous systems (Ascher, U.M. 

and L.R. Petzold, 1998: SIAM.). 

10.1 Algorithm for Nonlinear Higher-Order Differential Equations 

 Algorithm 1 Nonlinear Higher-Order Differential Equations (NHODE) 

% solving Boundary value problem with unknown parameter 

% Example: Mathieu's Equation; y''+(Lambda-2.q.cos(2x).y=0 

% y (0)=1; y'(0)=0; y'(pi)=0;  

% The task is to compute the fourth (q = 5) eigenvalue lambda of Mathieu’s equation 

% solution Initial guess 

% Initial guess of the unknown parameter 

% Solve the problem using bvp4c 

% sol= bvp5c(@mat4ode, @mat4bc,solinit): 

% --------------------------------------------------------------- 

% Equations to solve 

% y''+(lambda-2.q.cos(2x). y=0 

% -------------------------------------------------------------------------- 

% conditions 

% y'(0) = 0; --> ya(2)    initial condition 
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% y'(pi)=0; --> yb(2)    initial condition 

% y(0)=1; --> ya(1)-1     initial condition 

% Note ya(1) is a condition of y(0) , yb(1) is a condition of y(tf) 

%      ya(2) is a condition of y'(0), yb(2) is a condition of y'(tf) 

 

Columns 71 through 80 

44.42

66 

45.06

12 

45.69

59 

46.33

06 

46.96

52 

47.59

99 

48.23

46 

48.86

92 

49.50

39 

50.13

85 

Columns 81 through 90 

50.77

32 

51.40

79 

52.04

25 

52.67

72 

53.31

19 

53.94

65 

54.58

12 

55.21

59 

55.85

05 

56.48

52 

Columns 91 through 100 

57.11

99  

57.75

45 

58.38

92 

59.02

39 

59.65

85 

60.29

32 

60.92

79 

61.56

25 

62.19

72 

62.83

19 

 

11. Conclusions and recommendations 

The system of nonlinear differential equations was transformed into simple linear 

differential equations, and the Matthew equation was described in a discrete way. The time 

averages of the periodic coefficients in the nonlinear differential equation were calculated after 

reducing it to a linear degree, resulting in a differential equation with constant coefficients that is 

easier to solve. The computer was used to process the equation and calculate approximate 

solutions using MATLAB. The study of the Matthew equation is of great importance for several 

reasons: It helps in understanding many complex physical phenomena, such as resonance and 

vibrations that use nonlinear differential equations. The results of the study of the equation can 

be used in designing more efficient and stable control systems. It helps in predicting the behavior 

of complex systems, which contributes to improving their design and maintenance. The Matthew 

equation is a powerful tool for understanding and analyzing many physical and engineering 

phenomena. Despite the challenges facing its study, ongoing research contributes to the 
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development of new methods for solving and analyzing it, which opens up new horizons for 

applications in various fields. 
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